학술논문

Strongly pinned skyrmionic bubbles and higher-order nonlinear Hall resistances at the interface of Pt/FeSi bilayer
Document Type
Working Paper
Source
Subject
Condensed Matter - Strongly Correlated Electrons
Language
Abstract
Engineering of magnetic heterostructures for spintronic applications has entered a new phase, driven by the recent discoveries of topological materials and exfoliated van der Waals materials. Their low-dimensional properties can be dramatically modulated in designer heterostructures via proximity effects from adjacent materials, thus enabling the realization of diverse quantum states and functionalities. Here we investigate spin-orbit coupling (SOC) proximity effects of Pt on the recently discovered quasi-two-dimensional ferromagnetic state at FeSi surface. Skyrmionic bubbles (SkBs) are formed as a result of the enhanced interfacial Dzyloshinskii-Moriya interaction. The strong pinning effects on the SkBs are evidenced from the significant dispersion in size and shape of the SkBs and are further identified as a greatly enhanced threshold current density required for depinning of the SkBs. The robust integrity of the SkB assembly leads to the emergence of higher-order nonlinear Hall effects in the high current density regime, which originate from nontrivial Hall effects due to the noncollinearity of the spin texture, as well as from the current-induced magnetization dynamics via the augmented spin-orbit torque.
Comment: 4 figures