학술논문

High-fidelity parallel entangling gates on a neutral atom quantum computer
Document Type
Working Paper
Source
Nature 622, 268-272 (2023)
Subject
Quantum Physics
Condensed Matter - Quantum Gases
Physics - Atomic Physics
Language
Abstract
The ability to perform entangling quantum operations with low error rates in a scalable fashion is a central element of useful quantum information processing. Neutral atom arrays have recently emerged as a promising quantum computing platform, featuring coherent control over hundreds of qubits and any-to-any gate connectivity in a flexible, dynamically reconfigurable architecture. The major outstanding challenge has been to reduce errors in entangling operations mediated through Rydberg interactions. Here we report the realization of two-qubit entangling gates with 99.5% fidelity on up to 60 atoms in parallel, surpassing the surface code threshold for error correction. Our method employs fast single-pulse gates based on optimal control, atomic dark states to reduce scattering, and improvements to Rydberg excitation and atom cooling. We benchmark fidelity using several methods based on repeated gate applications, characterize the physical error sources, and outline future improvements. Finally, we generalize our method to design entangling gates involving a higher number of qubits, which we demonstrate by realizing low-error three-qubit gates. By enabling high-fidelity operation in a scalable, highly connected system, these advances lay the groundwork for large-scale implementation of quantum algorithms, error-corrected circuits, and digital simulations.
Comment: 5 pages, 4 figures. Methods: 13 pages, 10 figures