학술논문

Intersubband polariton-polariton scattering in a dispersive microcavity
Document Type
Working Paper
Source
Subject
Physics - Optics
Condensed Matter - Mesoscale and Nanoscale Physics
Language
Abstract
The ultrafast scattering dynamics of intersubband polaritons in dispersive cavities embedding GaAs/AlGaAs quantum wells are studied directly within their band structure using a non-collinear pump-probe geometry with phase-stable mid-infrared pulses. Selective excitation of the lower polariton at a frequency of ~25 THz and at a finite in-plane momentum, $k_{||}$, leads to the emergence of a narrowband maximum in the probe reflectivity at $k_{||}=0$. A quantum mechanical model identifies the underlying microscopic process as stimulated coherent polariton-polariton scattering. These results mark an important milestone towards quantum control and bosonic lasing in custom-tailored polaritonic systems in the mid and far-infrared.