학술논문

The resolved scaling relations in DustPedia: Zooming in on the local Universe
Document Type
Working Paper
Source
A&A 668, A130 (2022)
Subject
Astrophysics - Astrophysics of Galaxies
Language
Abstract
We perform a homogeneous analysis of an unprecedented set of spatially resolved scaling relations (SRs) between ISM components and other properties in the range of scales 0.3-3.4 kpc. We also study some ratios: dust-to-stellar, dust-to-gas, and dust-to-metal. We use a sample of 18 large, spiral, face-on DustPedia galaxies. All the SRs are moderate/strong correlations except the dust-HI SR that does not exist or is weak for most galaxies. The SRs do not have a universal form but each galaxy is characterized by distinct correlations, affected by local processes and galaxy peculiarities. The SRs hold starting from 0.3 kpc, and if a breaking down scale exists it is < 0.3 kpc. By evaluating all galaxies at 3.4 kpc, differences due to peculiarities of individual galaxies are cancelled out and the corresponding SRs are consistent with those of whole galaxies. By comparing subgalactic and global scales, the most striking result emerges from the SRs involving ISM components: the dust-total gas SR is a good correlation at all scales, while the dust-H2 and dust-HI SRs are good correlations at subkpc/kpc and total scales, respectively. For the other explored SRs, there is a good agreement between small and global scales and this may support the picture where the main physical processes regulating the properties and evolution of galaxies occur locally. Our results are consistent with the hypothesis of self-regulation of the SF process. The analysis of subgalactic ratios shows that they are consistent with those derived for whole galaxies, from low to high z, supporting the idea that also these ratios could be set by local processes. Our results highlight the heterogeneity of galaxy properties and the importance of resolved studies on local galaxies in the context of galaxy evolution. They also provide observational constraints to theoretical models and updated references for high-z studies.
Comment: 42 pages, 11 figures and 5 tables in the main text, 2 figures and 1 table in Appendix. Accepted for publication in A&A