학술논문

Using system-reservoir methods to derive effective field theories for broadband nonlinear quantum optics: a case study on cascaded quadratic nonlinearities
Document Type
Working Paper
Source
Subject
Quantum Physics
Physics - Optics
Language
Abstract
In broadband quantum optical systems, nonlinear interactions among a large number of frequency components induce complex dynamics that may defy heuristic analysis. In this work we introduce a perturbative framework for factoring out reservoir degrees of freedom and establishing a concise effective model (effective field theory) for the remaining system. Our approach combines approximate diagonalization of judiciously partitioned subsystems with master equation techniques. We consider cascaded optical $\chi^{(2)}$ (quadratic) nonlinearities as an example and show that the dynamics can be construed (to leading order) as self-phase modulations of dressed fundamental modes plus cross-phase modulations of dressed fundamental and second-harmonic modes. We then formally eliminate the second-harmonic degrees of freedom and identify emergent features of the fundamental wave dynamics, such as two-photon loss channels, and examine conditions for accuracy of the reduced model in dispersive and dissipative parameter regimes. Our results highlight the utility of system-reservoir methods for deriving accurate, intuitive reduced models for complex dynamics in broadband nonlinear quantum photonics.
Comment: 25 pages, 8 figures