학술논문

Electronic Origin of High-Tc Maximization and Persistence in Trilayer Cuprate Superconductors
Document Type
Working Paper
Source
Nature Physics 19, 1841-1847 (2023)
Subject
Condensed Matter - Superconductivity
Condensed Matter - Strongly Correlated Electrons
Language
Abstract
In high temperature cuprate superconductors, it was found that the superconducting transition temperature Tc depends on the number of CuO2 planes (n) in the structural unit and the maximum Tc is realized in the trilayer system (n=3). It was also found that the trilayer superconductors exhibit an unusual phase diagram that Tc keeps nearly constant in the overdoped region which is in strong contrast to the Tc decrease usually found in other cuprate superconductors. The electronic origin of the Tc maximization in the trilayer superconductors and its high Tc persistence in the overdoped region remains unclear. By taking high resolution laser-based angle resolved photoemission (ARPES) measurements, here we report our revelation of the microscopic origin of the unusual superconducting properties in the trilayer superconductors. For the first time we have observed the trilayer splitting in Bi2Sr2Ca2Cu3O10+d (Bi2223) superconductor. The observed Fermi surface, band structures, superconducting gap and the selective Bogoliubov band hybridizations can be well described by a three-layer interaction model. Quantitative information of the microscopic processes involving intra- and interlayer hoppings and pairings are extracted. The electronic origin of the maximum Tc in Bi2223 and the persistence of the high Tc in the overdoped region is revealed. These results provide key insights in understanding high Tc superconductivity and pave a way to further enhance Tc in the cuprate superconductors.