학술논문

Identifying the SN 2022acko progenitor with JWST
Document Type
Working Paper
Source
Subject
Astrophysics - High Energy Astrophysical Phenomena
Astrophysics - Astrophysics of Galaxies
Astrophysics - Solar and Stellar Astrophysics
Language
Abstract
We report on analysis using the James Webb Space Telescope (JWST) to identify a candidate progenitor star of the Type II-plateau supernova SN 2022acko in the nearby, barred spiral galaxy NGC 1300. To our knowledge, our discovery represents the first time JWST has been used to localize a progenitor system in pre-explosion archival Hubble Space Telescope (HST) images. We astrometrically registered a JWST NIRCam image from 2023 January, in which the SN was serendipitously captured, to pre-SN HST F160W and F814W images from 2017 and 2004, respectively. An object corresponding precisely to the SN position has been isolated with reasonable confidence. That object has a spectral energy distribution (SED) and overall luminosity consistent with a single-star model having an initial mass possibly somewhat less than the canonical 8 Msun theoretical threshold for core collapse (although masses as high as 9 Msun for the star are also possible); however, the star's SED and luminosity are inconsistent with that of a super-asymptotic giant branch star which might be a forerunner of an electron-capture SN. The properties of the progenitor alone imply that SN 2022acko is a relatively normal SN II-P, albeit most likely a low-luminosity one. The progenitor candidate should be confirmed with follow-up HST imaging at late times, when the SN has sufficiently faded. This potential use of JWST opens a new era of identifying SN progenitor candidates at high spatial resolution.
Comment: 8 pages, substantial changes from v1, to appear in MNRAS