학술논문

Development of the strip LGAD detector with double-end readout for future colliders
Document Type
Working Paper
Source
Subject
Physics - Instrumentation and Detectors
Nuclear Experiment
Language
Abstract
The Low-Gain Avalanche Diode (LGAD) is a new silicon detector and holds wide application prospects in particle physics experiments due to its excellent timing resolution. The LGAD with a pixel size of 1.3 mm $\times$ 1.3 mm was used to construct a High Granularity Timing Detector (HGTD) in ATLAS experiments to solve the pile-up problem. Meanwhile, the Circular Electron Positron Collider (CEPC) also proposes detectors using the LGAD. However, pixel LGAD exhibits higher readout electronics density and cost, which somewhat limits the application of LGADs. To decrease the readout electronics density, the Institute of High Energy Physics (IHEP) of the Chinese Academy of Sciences has designed strip LGADs with larger areas. These strip LGADs are all 19 mm in length but with different widths of 1.0 mm, 0.5 mm, and 0.3 mm. This article provides a detailed introduction to the design parameters of these strip LGADs and tests their electrical characteristics, including leakage current, break-down voltage, depletion capacitance, etc. The timing resolution and signal-to-noise ratio of the three strip LGAD sensors were investigated using a beta source test system. The position resolution parallel to the strip direction was tested and analyzed for the first time using a pico-second laser test system. Tests have demonstrated that the timing resolution of strip LGADs can reach about 37.5 ps, and position resolution parallel to the strip direction is better than 1 mm.