학술논문

DEMPgen: Physics event generator for Deep Exclusive Meson Production at Jefferson Lab and the EIC
Document Type
Working Paper
Source
Subject
High Energy Physics - Phenomenology
High Energy Physics - Experiment
Physics - Computational Physics
Language
Abstract
There is increasing interest in deep exclusive meson production (DEMP) reactions, as they provide access to Generalized Parton Distributions over a broad kinematic range, and are the only means of measuring pion and kaon charged electric form factors at high $Q^2$. Such investigations are a particularly useful tool in the study of hadronic structure in QCD's transition regime from long-distance interactions described in terms of meson-nucleon degrees of freedom, to short-dist ance interactions governed by hard quark-gluon degrees of freedom. To assist the planning of future experimental investigations of DEMP reactions in this transition regime, such as at Jefferson Lab and the Electron-Ion Collider (EIC), we have written a special purpose event generator, DEMPgen. Several types of DEMP reactions can be generated: $t$-channel $p(e,e^{\prime}\pi^+)n$, $p(e,e^{\prime}K^+)\Lambda[\Sigma^0]$, and $\vec{n}(e,e^{\prime}\pi^-)p$ from a polarized $^3$He target. DEMPgen is modular in form, so that additional reactions can be added over time. The generator produces kinematically-complete reaction events which are absolutely-normalized, so that projected event rates can be predicted, and detector resolution requirements studied. The event normalization is based on parameterizations of theoretical models, appropriate to the kinematic regime under study. Both fixed target modes and collider beam modes are supported. This paper presents the structure of the generator, the model parameterizations used for absolute event weighting, the kinematic distributions of the generated particles, some initial results using the generator, and instructions for its use.
Comment: 37 pages, 27 figures