학술논문

Purcell enhanced optical refrigeration
Document Type
Working Paper
Source
Subject
Physics - Optics
Quantum Physics
Language
Abstract
Optical refrigeration of solids with anti-Stokes fluorescence has been widely explored as a vibration-free cryogenic cooling technology. A minimum temperature of 87 K has been demonstrated with rare-earth ion doped crystals using optical refrigeration. However, the depletion of the upper-lying energy levels in the ground state manifold hinders further cooling to below liquid nitrogen (LN$_2$) temperatures, confining its applications. In this work, we introduce a Purcell enhanced optical refrigeration method to circumvent this limitation. This approach enhances the emission of high energy photons by coupling to a nearby nanocavity, blue shifting the mean emission wavelength. Such Purcell enhanced emission facilitates cooling starting from a lower energy level in the ground state manifold, which exhibits a higher occupation below LN$_2$ temperatures. Using our experimentally measured optical coefficients, our theoretical analysis predicts a minimum achievable temperature of 38 K for a Yb$^{3+}$:YLiF$_{4}$ nanocrystal near a cavity under realistic conditions. The proposed method is applicable to other rare-earth ion doped materials and semiconductors, and will have applications in creating superconducting and other quantum devices with solid-state cooling.
Comment: 6 pages