학술논문

Lorentz and permutation invariants of particles II
Document Type
Working Paper
Source
Subject
High Energy Physics - Theory
High Energy Physics - Phenomenology
Mathematical Physics
Language
Abstract
Two theorems of Weyl tell us that the algebra of Lorentz- (and parity-) invariant polynomials in the momenta of $n$ particles are generated by the dot products and that the redundancies which arise when $n$ exceeds the spacetime dimension $d$ are generated by the $(d+1)$-minors of the $n \times n$ matrix of dot products. Here, we use the Cohen-Macaulay structure of the invariant algebra to provide a more direct characterisation in terms of a Hironaka decomposition. Among the benefits of this approach is that it can be generalized straightforwardly to cases where a permutation group acts on the particles, such as when some of the particles are identical. In the first non-trivial case, $n=d+1$, we give a homogeneous system of parameters that is valid for the action of an arbitrary permutation symmetry and make a conjecture for the full Hironaka decomposition in the case without permutation symmetry. An appendix gives formul\ae\ for the computation of the relevant Hilbert series for $d \leq 4$.
Comment: 20 pages