학술논문

Deciphering the imprint of AGN feedback in Seyfert galaxies: Nuclear-scale molecular gas deficits
Document Type
Working Paper
Source
Subject
Astrophysics - Astrophysics of Galaxies
Language
Abstract
We use a sample of 64 nearby (D=7-45 Mpc) disk galaxies including 45 AGN and 19 non-AGN, that have high spatial resolution multiline CO observations obtained with the ALMA and/or PdBI arrays to study the distribution of cold molecular gas in their circumunuclear disks (CND). We analyze whether the concentration of cold molecular gas changes as a function of the X-ray luminosity in the 2-10 keV range ($L_{\rm X}$). We also study the concentration of the hot molecular gas using NIR data obtained for the H2 1-0S(1) line. We find a turnover in the distribution of the cold molecular gas concentration as a function of $L_{\rm X}$ with a breakpoint which divides the sample into two branches: the AGN build-up branch ($L_{\rm X}\leq10^{41.5\pm0.3}$erg/s) and the AGN feedback branch ($L_{\rm X}\geq10^{41.5\pm0.3}$erg/s) . Lower luminosity AGN and non-AGN of the AGN build-up branch show high cold molecular gas concentrations and centrally peaked radial profiles on nuclear ($r\leq50$~pc) scales. Higher luminosity AGN of the AGN feedback branch, show a sharp decrease in the concentration of molecular gas and flat or inverted radial profiles. The cold molecular gas concentration index ($CCI$), defined as the ratio of surface densities at $r\leq50$~pc and $r\leq200$~pc , namely $CCI \equiv$~log$_{\rm 10}(\Sigma^{\rm gas}_{\rm 50}/\Sigma^{\rm gas}_{\rm 200}$), spans a factor ~4-5 between the galaxies lying at the high end of the AGN build-up branch and the galaxies of the AGN feedback branch. The concentration and radial distributions of the hot molecular gas in our sample follow less extreme trends as a function of the X-ray luminosity. These observations confirm, on a three times larger sample, previous evidence found by the GATOS survey that the imprint of AGN feedback on the CND-scale distribution of molecular gas is more extreme in higher luminosity Seyfert galaxies of the local universe.
Comment: Accepted by Astronomy & Astrophysics (A&A) (14/06/2024), 26 pages, 16 figures