학술논문

High-speed detection of 1550 nm single photons with superconducting nanowire detectors
Document Type
Working Paper
Source
Subject
Quantum Physics
Physics - Applied Physics
Physics - Optics
Language
Abstract
Superconducting nanowire single photon detectors are a key technology for quantum information and science due to their high efficiency, low timing jitter, and low dark counts. In this work, we present a detector for single 1550 nm photons with up to 78% detection efficiency, timing jitter below 50 ps FWHM, 158 counts/s dark count rate - as well as a world-leading maximum count rate of 1.5 giga-counts/s at 3 dB compression. The PEACOQ detector (Performance-Enhanced Array for Counting Optical Quanta) comprises a linear array of 32 straight superconducting niobium nitride nanowires which span the mode of an optical fiber. This design supports high count rates with minimal penalties for detection efficiency and timing jitter. We show how these trade-offs can be mitigated by implementing independent read-out for each nanowire and by using a temporal walk correction technique to reduce count-rate dependent timing jitter. These detectors make quantum communication practical on a 10 GHz clock.
Comment: 12 pages, 4 figures