학술논문

An improved analysis framework for axion dark matter searches
Document Type
Working Paper
Source
Phys. Rev. D 101, 123011 (2020)
Subject
Astrophysics - Instrumentation and Methods for Astrophysics
High Energy Physics - Experiment
Physics - Data Analysis, Statistics and Probability
Language
Abstract
In experiments searching for axionic dark matter, the use of the standard threshold-based data analysis discards valuable information. We present a Bayesian analysis framework that builds on an existing processing protocol to extract more information from the data of coherent axion detectors such as operating haloscopes. The analysis avoids logical subtleties that accompany the standard analysis framework and enables greater experimental flexibility on future data runs. Performing this analysis on the existing data from the HAYSTAC experiment, we find improved constraints on the axion-photon coupling $g_\gamma$ while also identifying the most promising regions of parameter space within the $23.15$--$24.0$ $\mu$eV mass range. A comparison with the standard threshold analysis suggests a $36\%$ improvement in scan rate from our analysis, demonstrating the utility of this framework for future axion haloscope analyses.
Comment: 22 pages, 5 figures