학술논문

Unified Differentiable Learning of Electric Response
Document Type
Working Paper
Source
Subject
Condensed Matter - Materials Science
Language
Abstract
Predicting response of materials to external stimuli is a primary objective of computational materials science. However, current methods are limited to small-scale simulations due to the unfavorable scaling of computational costs. Here, we implement an equivariant machine-learning framework where response properties stem from exact differential relationships between a generalized potential function and applied external fields. Focusing on responses to electric fields, the method predicts electric enthalpy, forces, polarization, Born charges, and polarizability within a unified model enforcing the full set of exact physical constraints, symmetries and conservation laws. Through application to $\alpha$-SiO$_2$, we demonstrate that our approach can be used for predicting vibrational and dielectric properties of materials, and for conducting large-scale dynamics under arbitrary electric fields at unprecedented accuracy and scale. We apply our method to ferroelectric BaTiO$_3$ and capture the temperature-dependence and time evolution of hysteresis, revealing the underlying microscopic mechanisms of nucleation and growth that govern ferroelectric domain switching.
Comment: 15 pages, 6 figures