학술논문

Modelling heterogeneity in the classification process in multi-species distribution models can improve predictive performance
Document Type
Working Paper
Source
Subject
Statistics - Applications
Language
Abstract
1. Species distribution models and maps from large-scale biodiversity data are necessary for conservation management. One current issue is that biodiversity data are prone to taxonomic misclassifications. Methods to account for these misclassifications in multispecies distribution models have assumed that the classification probabilities are constant throughout the study. In reality, classification probabilities are likely to vary with several covariates. Failure to account for such heterogeneity can lead to bias in parameter estimates. 2. Here we present a general multispecies distribution model that accounts for heterogeneity in the classification process. The proposed model assumes a multinomial generalised linear model for the classification confusion matrix. We compare the performance of the heterogeneous classification model to that of the homogeneous classification model by assessing how well they estimate the parameters in the model and their predictive performance on hold-out samples. We applied the model to gull data from Norway, Denmark and Finland, obtained from GBIF. 3. Our simulation study showed that accounting for heterogeneity in the classification process increased precision by 30% and reduced accuracy and recall by 6%. Applying the model framework to the gull dataset did not improve the predictive performance between the homogeneous and heterogeneous models due to the smaller misclassified sample sizes. However, when machine learning predictive scores are used as weights to inform the species distribution models about the classification process, the precision increases by 70%. 4. We recommend multiple multinomial regression to be used to model the variation in the classification process when the data contains relatively larger misclassified samples. Machine prediction scores should be used when the data contains relatively smaller misclassified samples.