학술논문

Quintessential Cosmological Tensions
Document Type
Working Paper
Source
Subject
Astrophysics - Cosmology and Nongalactic Astrophysics
High Energy Physics - Theory
Language
Abstract
Several cosmological tensions have emerged in light of recent data, most notably in the inferences of the parameters $H_0$ and $\sigma_8$. We explore the possibility of alleviating both these tensions {\it simultaneously} by means of the Albrecht-Skordis ``quintessence'' potential. The field can reduce the size of the sound horizon $r_s^*$ while concurrently suppressing the power in matter density fluctuations before it comes to dominate the energy density budget today. Interestingly, this rich set of dynamics is governed entirely by one free parameter that is of $\mathcal{O}(10)$ in Planck units. We find that the inferred value of $H_0$ can be increased, while that of $\sigma_8$ can be decreased, both by $\approx 1\sigma$ compared to the $\Lambda$CDM case. However, ultimately the model is disfavored by Planck and BAO data alone, compared to the standard $\Lambda$CDM model, with a $\Delta \chi^2 \approx +6$. When including large scale structure and supernova data $\Delta \chi^2 \approx +1$. We note that historically much attention has been focused on preserving the three angular scales $\theta_D$, $\theta_{EQ}$, and $\theta_s^*$ to their $\Lambda$CDM values. Our work presents an example of how, while doing so indeed maintains a relatively good fit to the CMB data for an increased number of ultra-relativistic species, it is a-priori insufficient in maintaining such a fit in more general model spaces.
Comment: 18 pages, 8 figures, 1 appendix