학술논문

Emergent interlayer magnetic order via strain-induced orthorhombic distortion in the 5d Mott insulator Sr2IrO4
Document Type
Working Paper
Source
Subject
Condensed Matter - Strongly Correlated Electrons
Condensed Matter - Mesoscale and Nanoscale Physics
Condensed Matter - Materials Science
Condensed Matter - Superconductivity
Language
Abstract
We report a La2CuO4-like interlayer antiferromagnetic order in Sr2IrO4 films with large orthorhombic distortion (> 1.5%). The biaxial lattice strain in epitaxial heterostructures of Sr2IrO4/Ca3Ru2O7 lowers the crystal symmetry of Sr2IrO4 from tetragonal (C4) to orthorhombic (C2), guiding the Ir 5d Jeff = 1/2 pseudospin moment parallel to the elongated b-axis via magnetic anisotropy. From resonant X-ray scattering experiments, we observed an antiferromagnetic order in the orthorhombic Sr2IrO4 film whose interlayer stacking pattern is inverted from that of the tetragonal Sr2IrO4 crystal. This interlayer stacking is similar to that of the orthorhombic La2CuO4, implying that the asymmetric interlayer exchange interaction along a and b-directions exceeds the anisotropic interlayer pseudo-dipolar interaction. Our result suggests that strain-induced distortion can provide a delicate knob for tuning the long-range magnetic order in quasi-two-dimensional systems by evoking the competition between the interlayer exchange coupling and the pseudo-dipolar interaction.
Comment: 5 pages, 4 figures