학술논문

Ultra-deep ATCA imaging of 47 Tucanae reveals a central compact radio source
Document Type
Working Paper
Source
Subject
Astrophysics - High Energy Astrophysical Phenomena
Astrophysics - Astrophysics of Galaxies
Language
Abstract
We present the results of an ultra-deep radio continuum survey, containing $\sim480$ hours of observations, of the Galactic globular cluster 47 Tucanae with the Australia Telescope Compact Array. This comprehensive coverage of the cluster allows us to reach RMS noise levels of 1.19 $\mu Jy~\textrm{beam}^{-1}$ at 5.5 GHz, 940 $nJy~\textrm{beam}^{-1}$ at 9 GHz, and 790 $nJy~\textrm{beam}^{-1}$ in a stacked 7.25 GHz image. This is the deepest radio image of a globular cluster, and the deepest image ever made with the Australia Telescope Compact Array. We identify ATCA J002405.702-720452.361, a faint ($6.3\pm1.2$ $\mu Jy$ at 5.5 GHz, $5.4\pm0.9$ $\mu Jy$ at 9 GHz), flat-spectrum ($\alpha=-0.31\pm0.54$) radio source that is positionally coincident with the cluster centre and potentially associated with a faint X-ray source. No convincing optical counterpart was identified. We use radio, X-ray, optical, and UV data to show that explanations involving a background active galactic nucleus, a chromospherically active binary, or a binary involving a white dwarf are unlikely. The most plausible explanations are that the source is an undiscovered millisecond pulsar or a weakly accreting black hole. If the X-ray source is associated with the radio source, the fundamental plane of black hole activity suggests a black hole mass of $\sim54-6000$ M$_{\odot}$, indicating an intermediate-mass black hole or a heavy stellar-mass black hole.
Comment: ApJ in press, 25 pages, 10 figures