학술논문

Repeated quantum error correction on a continuously encoded qubit by real-time feedback
Document Type
Working Paper
Source
Nat. Commun. 7, 11526 (2016)
Subject
Quantum Physics
Condensed Matter - Mesoscale and Nanoscale Physics
Language
Abstract
Reliable quantum information processing in the face of errors is a major fundamental and technological challenge. Quantum error correction protects quantum states by encoding a logical quantum bit (qubit) in multiple physical qubits. To be compatible with universal fault-tolerant computations, it is essential that the states remain encoded at all times and that errors are actively corrected. Here we demonstrate such active error correction on a continuously protected qubit using a diamond quantum processor. We encode a logical qubit in three long-lived nuclear spins, repeatedly detect phase errors by non-destructive measurements using an ancilla electron spin, and apply corrections on the encoded state by real-time feedback. The actively error-corrected qubit is robust against errors and multiple rounds of error correction prevent errors from accumulating. Moreover, by correcting correlated phase errors naturally induced by the environment, we demonstrate that encoded quantum superposition states are preserved beyond the dephasing time of the best physical qubit used in the encoding. These results establish a powerful platform for the fundamental investigation of error correction under different types of noise and mark an important step towards fault-tolerant quantum information processing.