학술논문

Emergent topological magnetism in Hund's excitonic insulator
Document Type
Working Paper
Source
Subject
Condensed Matter - Strongly Correlated Electrons
Condensed Matter - Materials Science
Language
Abstract
Analogous to the charged electron-electron pair condensation in superconductors, an excitonic insulator (EI) represents Fermi surface instability due to spontaneous formation and condensation of charge-neutral electron-hole pair (exciton). Unlike in superconductors, however, the charge-neutral nature of exciton makes probing emergent EI phase via macroscopic physical properties generally difficult. Here, we propose a van der Waals coupled antiferromagnetic semiconductor GdGaI (GGI) as a new material category leading to emergent multi-q magnet intertwined with spontaneous exciton formation/condensation. Before excitonic band hybridization, a simple picture for the parent electronic state consists of electron (Gd-derived 5d) and hole (Ga-derived 4p) delocalized bands, together with Gd-derived 4f localized antiferromagnets with S = 7/2 classical nature. Through intra Gd atom 4f-5d Hund's coupling, a notable finding is the emergent minimum length scale (2a) Skyrmion-like spin texture resulting from spontaneous condensation/formation of spin-polarized exciton with BCS-BEC crossover phenomenology. This discovered platform is promising for realizing valuable quantum matter on the nanoscale; our finding will provide significant insight into designing the atomic scale topological magnetism out of itinerant systems.
Comment: 23 pages, 10 figures