학술논문

Damage threshold in pre-heated materials exposed to intense X-rays
Document Type
Working Paper
Source
Subject
Condensed Matter - Materials Science
Language
Abstract
Materials exposed to ultrashort intense x-ray irradiation may experience various damaging conditions depending on the in-situ temperature. A pre-heated target exposed to intense x-rays plays a crucial role in numerous systems of physical-technical importance, ranging from the heavily-, and repeatedly radiation-loaded optics at x-ray free-electron laser facilities, to the first wall of prospective inertial fusion reactors. We study theoretically the damage threshold dependence on the temperature in different classes of materials: an insulator (diamond), a semiconductor (silicon), a metal (tungsten), and an organic polymer (PMMA). The numerical techniques used here enable us to trace the evolution of both, an electronic state and atomic dynamics of the materials. It includes damage mechanisms such as thermal damage (induced by an increase of the atomic temperature due to energy transfer from x-ray-excited electrons) and nonthermal phase transitions (induced by changes in the interatomic potential due to excitation of electrons). We demonstrate that in the pre-heated materials, typically, the thermal damage threshold stays the same or lowers with the increase of the in-situ temperature, whereas nonthermal damage thresholds may be lowered or raised, depending on the particular material and specifics of the damage kinetics.