학술논문

Light and Slow-Neutron Diffraction by Nanodiamond-Dispersed Nanocomposite Holographic Gratings
Document Type
Working Paper
Source
Phys. Rev. Applied 14, 044056 (2020)
Subject
Physics - Optics
Physics - Applied Physics
Language
Abstract
We demonstrate the use of nanodiamond in constructing holographic nanoparticle-polymer composite transmission gratings with large saturated refractive index modulation amplitudes at both optical and slow-neutron wavelengths, resulting in efficient control of light and slow-neutron beams. Nanodiamond possesses a high refractive index at optical wavelengths and large coherent and small incoherent scattering cross sections with low absorption at slow-neutron wavelengths. We describe the synthesis of nanodiamond, the preparation of photopolymerizable nanodiamond-polymer composite films, the construction of transmission gratings in nanodiamond-polymer composite films and light optical diffraction experiments. Results of slow-neutron diffraction from such gratings are also presented.
Comment: Accepted for publication in Phys. Rev. Applied (2020)