학술논문

Schwinger-Keldysh effective field theory for stable and causal relativistic hydrodynamics
Document Type
Working Paper
Source
Subject
High Energy Physics - Theory
Condensed Matter - Statistical Mechanics
High Energy Physics - Phenomenology
Nuclear Theory
Physics - Fluid Dynamics
Language
Abstract
We construct stable and causal effective field theories (EFTs) for describing statistical fluctuations in relativistic diffusion and relativistic hydrodynamics. These EFTs are fully non-linear, including couplings to background sources, and enable us to compute n-point time-ordered correlation functions including the effects of statistical fluctuations. The EFTs we construct are inspired by the Maxwell-Cattaneo model of relativistic diffusion and M\"uller-Israel-Stewart model of relativistic hydrodynamics respectively, and have been derived using both the Martin-Siggia-Rose and Schwinger-Keldysh formalisms. The EFTs non-linearly realise the dynamical Kubo-Martin-Schwinger (KMS) symmetry, which ensures that n-point correlation functions and interactions in the theory satisfy the appropriate fluctuation-dissipation theorems. Since these EFTs typically admit ultraviolet sectors that are not fixed by the low-energy infrared symmetries, we find that they simultaneously admit multiple realisations of the dynamical KMS symmetry. We also comment on certain obstructions to including statistical fluctuations in the recently-proposed stable and causal Bemfica-Disconzi-Noronha-Kovtun model of relativistic hydrodynamics.
Comment: 47+1 pages