학술논문

Global Fit of Electron and Neutrino Elastic Scattering Data to Determine the Strange Quark Contribution to the Vector and Axial Form Factors of the Nucleon
Document Type
Working Paper
Source
Phys. Rev. D 109, 093001, 2024
Subject
High Energy Physics - Phenomenology
High Energy Physics - Experiment
Nuclear Experiment
Nuclear Theory
Language
Abstract
We present a global fit of neutral-current elastic (NCE) neutrino-scattering data and parity-violating electron-scattering (PVES) data with the goal of determining the strange quark contribution to the vector and axial form factors of the proton. Previous fits of this form included data from a variety of PVES experiments (PVA4, HAPPEx, G0, SAMPLE) and the NCE neutrino and anti-neutrino data from BNL E734. These fits did not constrain the strangeness contribution to the axial form factor $G_A^s(Q^2)$ at low $Q^2$ very well because there was no NCE data for $Q^2<0.45$ GeV$^2$. Our new fit includes for the first time MiniBooNE NCE data from both neutrino and anti-neutrino scattering; this experiment used a hydrocarbon target and so a model of the neutrino interaction with the carbon nucleus was required. Three different nuclear models have been employed: a relativistic Fermi gas model, the SuperScaling Approximation model, and a spectral function model. We find a tremendous improvement in the constraint of $G_A^s(Q^2)$ at low $Q^2$ compared to previous work, although more data is needed from NCE measurements that focus on exclusive single-proton final states, for example from MicroBooNE.
Comment: Revised in light of referee comments; now accepted for publication in Physical Review D