학술논문

Intermixing-driven surface and bulk ferromagnetism in the quantum anomalous Hall candidate MnBi$_6$Te$_{10}$
Document Type
Working Paper
Source
Subject
Condensed Matter - Materials Science
Condensed Matter - Strongly Correlated Electrons
Language
Abstract
The recent realizations of the quantum anomalous Hall effect (QAHE) in MnBi$_2$Te$_4$ and MnBi$_4$Te$_7$ benchmark the (MnBi$_2$Te$_4$)(Bi$_2$Te$_3$)$_n$ family as a promising hotbed for further QAHE improvements. The family owes its potential to its ferromagnetically (FM) ordered MnBi$_2$Te$_4$ septuple layers (SL). However, the QAHE realization is complicated in MnBi$_2$Te$_4$ and MnBi$_4$Te$_7$ due to the substantial antiferromagnetic (AFM) coupling between the SL. An FM state, advantageous for the QAHE, can be stabilized by interlacing the SL with an increasing number $n$ of Bi$_2$Te$_3$ layers. However, the mechanisms driving the FM state and the number of necessary QLs are not understood, and the surface magnetism remains obscure. Here, we demonstrate robust FM properties in MnBi$_6$Te$_{10}$ ($n = 2$) with $T_C \approx 12$ K and establish their origin in the Mn/Bi intermixing phenomenon by a combined experimental and theoretical study. Our measurements reveal a magnetically intact surface with a large magnetic moment, and with FM properties similar to the bulk. Our investigation thus consolidates the MnBi$_6$Te$_{10}$ system as perspective for the QAHE at elevated temperatures.