학술논문

Anomaly Attribution with Likelihood Compensation
Document Type
Working Paper
Source
Proceedings of the AAAI Conference on Artificial Intelligence, 35(5), 4131-4138, 2021
Subject
Computer Science - Machine Learning
Computer Science - Artificial Intelligence
Language
Abstract
This paper addresses the task of explaining anomalous predictions of a black-box regression model. When using a black-box model, such as one to predict building energy consumption from many sensor measurements, we often have a situation where some observed samples may significantly deviate from their prediction. It may be due to a sub-optimal black-box model, or simply because those samples are outliers. In either case, one would ideally want to compute a ``responsibility score'' indicative of the extent to which an input variable is responsible for the anomalous output. In this work, we formalize this task as a statistical inverse problem: Given model deviation from the expected value, infer the responsibility score of each of the input variables. We propose a new method called likelihood compensation (LC), which is founded on the likelihood principle and computes a correction to each input variable. To the best of our knowledge, this is the first principled framework that computes a responsibility score for real valued anomalous model deviations. We apply our approach to a real-world building energy prediction task and confirm its utility based on expert feedback.
Comment: 8 pages, 7 figures