학술논문

Enhanced superconducting pairing strength near a nonmagnetic nematic quantum critical point
Document Type
Working Paper
Source
Phys. Rev. X 13, 011032 (2023)
Subject
Condensed Matter - Superconductivity
Condensed Matter - Strongly Correlated Electrons
Language
Abstract
The quest for high-temperature superconductivity at ambient pressure is a central issue in physics. In this regard, the relationship between unconventional superconductivity and the quantum critical point (QCP) associated with the suppression of some form of symmetry-breaking order to zero temperature has received particular attention. The key question is how the strength of the electron pairs changes near the QCP, and this can be verified by high-field experiments. However, such studies are limited mainly to superconductors with magnetic QCPs, and the possibility of unconventional mechanisms by which nonmagnetic QCP promotes strong pairing remains a nontrivial issue. Here, we report systematic measurements of the upper critical field $H_{{\rm c2}}$ in nonmagnetic FeSe$_{1-x}$Te$_{x}$ superconductors, which exhibit a QCP of electronic nematicity characterized by spontaneous rotational-symmetry breaking. As the magnetic field increases, the superconducting phase of FeSe$_{1-x}$Te$_{x}$ shrinks to a narrower dome surrounding the nematic QCP. The analysis of $H_{{\rm c2}}$ reveals that the Pauli-limiting field is enhanced toward the QCP, implying that the pairing interaction is significantly strengthened via nematic fluctuations emanated from the QCP. Remarkably, this nonmagnetic nematic QCP is not accompanied by a divergent effective mass, distinct from the magnetically mediated pairing. Our observation opens up a nonmagnetic route to high-temperature superconductivity.
Comment: 6 pages, 4 figures