학술논문

Efficiently navigating a random Delaunay triangulation
Document Type
Working Paper
Source
Subject
Mathematics - Probability
Computer Science - Computational Geometry
Computer Science - Data Structures and Algorithms
Language
Abstract
Planar graph navigation is an important problem with significant implications to both point location in geometric data structures and routing in networks. However, whilst a number of algorithms and existence proofs have been proposed, very little analysis is available for the properties of the paths generated and the computational resources required to generate them under a random distribution hypothesis for the input. In this paper we analyse a new deterministic planar navigation algorithm with constant competitiveness which follows vertex adjacencies in the Delaunay triangulation. We call this strategy cone walk. We prove that given $n$ uniform points in a smooth convex domain of unit area, and for any start point $z$ and query point $q$; cone walk applied to $z$ and $q$ will access at most $O(|zq|\sqrt{n} +\log^7 n)$ sites with complexity $O(|zq|\sqrt{n} \log \log n + \log^7 n)$ with probability tending to 1 as $n$ goes to infinity. We additionally show that in this model, cone walk is $(\log ^{3+\xi} n)$-memoryless with high probability for any pair of start and query point in the domain, for any positive $\xi$. We take special care throughout to ensure our bounds are valid even when the query points are arbitrarily close to the border.