학술논문

Cosmic Evolution Early Release Science Survey (CEERS): Multi-classing Galactic Dwarf Stars in the deep JWST/NIRCam
Document Type
Working Paper
Source
Subject
Astrophysics - Astrophysics of Galaxies
Language
Abstract
Low mass (sub)stellar objects represent the low end of the initial mass function, the transition to free-floating planets and a prominent interloper population in the search for high-redshift galaxies. Without proper motions or spectroscopy, can one identify these objects photometrically? JWST/NIRCam has several advantages over HST/WFC3 NIR: more filters, a greater wavelength range, and greater spatial resolution. Here, we present a catalogue of (sub)stellar dwarfs identified in the Cosmic Evolution Early Release Science Survey (CEERS). We identify 518 stellar objects down to $m_F200W \sim 28$ using half-light radius, a full three magnitudes deeper than typical HST/WFC3 images. A kNN nearest neighbour algorithm identifies and types these sources, using four HST/WFC3 and four NIRCam filters, trained on SpeX spectra of nearby brown dwarfs. The kNN with four neighbors classifies well within two subtypes: e.g M2$\pm$2 or T4$\pm$2, achieving $\sim$95% precision and recall. More granular typing results in worse metrics. In CEERS, we find 9 M8$\pm$2, 2 L6$\pm$2, 1 T4$\pm$2, and 15 T8$\pm$2. We compare the observed long wavelength NIRCam colours -- not used in the kNN -- to those expected for brown dwarf atmospheric models. The NIRCam F356W-F444W and F410M-F444W colours are redder by a magnitude for the type assigned by the kNN, hinting at a wider variety of atmospheres for these objects. We find a 300-350pc scale-height for M6$\pm$2 dwarfs plus a second structural component and a 150-200pc scale-height for T6$\pm$2 type dwarfs, consistent with literature values.
Comment: 18 pages, 24 figures, 3 tables, submitted to MNRAS