학술논문

Strain Wave Pathway to Semiconductor-to-Metal Transition revealed by time resolved X-ray powder diffraction
Document Type
Working Paper
Source
Subject
Condensed Matter - Materials Science
Physics - Applied Physics
Language
Abstract
Thanks to the remarkable developments of ultrafast science, one of today's challenges is to modify material state by controlling with a light pulse the coherent motions that connect two different phases. Here we show how strain waves, launched by electronic and structural precursor phenomena, determine a macroscopic transformation pathway for the semiconducting-to-metal transition with large volume change in bistable Ti$_3$O$_5$ nanocrystals. Femtosecond powder X-ray diffraction allowed us to quantify the structural deformations associated with the photoinduced phase transition on relevant time scales. We monitored the early intra-cell distortions around absorbing metal dimers, but also long range crystalline deformations dynamically governed by acoustic waves launched at the laser-exposed Ti$_3$O$_5$ surface. We rationalize these observations with a simplified elastic model, demonstrating that a macroscopic transformation occurs concomitantly with the propagating acoustic wavefront on the picosecond timescale, several decades earlier than the subsequent thermal processes governed by heat diffusion.
Comment: 30 pages (including supplementary text), 5 main figures, 9 supplementary figures; corrected author list