학술논문

Sixteen years of X-ray monitoring of Sagittarius A*: Evidence for a decay of the faint flaring rate from 2013 August, 13 months before a rise in the bright flaring rate
Document Type
Working Paper
Source
A&A 604, A85 (2017)
Subject
Astrophysics - High Energy Astrophysical Phenomena
Language
Abstract
Recently, in a study the X-ray flaring activity of Sgr A* with Chandra and XMM-Newton public observations from 1999 to 2014 and 2014 Swift data, it has been argued that the "bright and very bright" flaring rate raised from 2014 Aug. 31. Thanks to 482ks of observations performed in 2015 with Chandra, XMM-Newton and Swift, we test the significance of this rise of flaring rate and determine the threshold of unabsorbed flare flux or fluence leading to any flaring-rate change. The mean unabsorbed fluxes of the 107 flares detected in the 1999-2015 observations are consistently computed from the extracted spectra and calibration files, assuming the same spectral parameters. We construct the observed flare fluxes and durations distribution for the XMM-Newton and Chandra flares and correct it from the detection biases to estimate the intrinsic distribution from which we determine the average flare detection efficiency for each observation. We apply the BB algorithm on the flare arrival times corrected from the corresponding efficiency. We confirm a constant overall flaring rate in 1999-2015 and a rise in the flaring rate for the most luminous/energetic flares from 2014 Aug. 31 (4 months after the passage of the DSO/G2 close to Sgr A*). We also identify a decay of the flaring rate for the less luminous and less energetic flares from 2013 Aug. and Nov., respectively (10 and 7 months before the pericenter of the DSO/G2). The decay of the faint flaring rate is difficult to explain by the tidal disruption of the DSO/G2, whose stellar nature is now well established, since it occurred well before its pericenter. Moreover, a mass transfer from the DSO/G2 to Sgr A* is not required to produce the rise in the bright flaring rate since the energy saved by the decay of the number of faint flares during a long time period may be later released by several bright flares during a shorter time period. (abridged)
Comment: Accepted in A&A in 2017 April 23