학술논문

Conjoined Charge Density Waves in the Kagome Superconductor CsV3Sb5
Document Type
Working Paper
Source
Nature Communications 13:6348 (2022)
Subject
Condensed Matter - Strongly Correlated Electrons
Language
Abstract
The intricate interplay between novel lattice geometry and spontaneous symmetry-breaking states is at the forefront of contemporary research on quantum materials. Recently, the observation of unconventional charge and pairing density waves in a kagome metal CsV3Sb5 brings out a new showcase for intertwined orders. While electronic instabilities in CsV3Sb5 are widely believed to originate from the V 3d-electrons residing on the 2-dimensional kagome sublattice, the pivotal role of Sb 5p-electrons for 3-dimensional orders is yet to be understood. Here, using resonant tender x-ray scattering and high-pressure X-ray scattering, we report a rare realization of conjoined charge density waves (CDW) in CsV3Sb5. At ambient pressure, we discover a resonant enhancement at Sb L1-edge (2s-5p) at the 2$\times$2$\times$2 CDW wavevectors. The resonance, however, is absent at the 2$\times$2 CDW wavevectors. Applying hydrostatic pressure, we find the CDW transition temperatures to separate, where the 2$\times$2$\times$2 CDW emerges 4 K above the 2$\times$2 CDW at 1GPa. Our results establish the coexistence of the 2$\times$2 CDW and the 5p-electron assisted 2$\times$2$\times$2 CDW in CsV3Sb5. The evolution of the conjoined CDWs under pressure suggests the joint importance of electronic and phononic fluctuations for the double dome superconductivity.