학술논문

Raman Spectroscopy, Photocatalytic Degradation and Stabilization of Atomically Thin Chromium Triiodide
Document Type
Working Paper
Source
Subject
Condensed Matter - Mesoscale and Nanoscale Physics
Condensed Matter - Materials Science
Language
Abstract
As a 2D ferromagnetic semiconductor with magnetic ordering, atomically thin chromium triiodide is the latest addition to the family of two-dimensional (2D) materials. However, realistic exploration of CrI3-based devices and heterostructures is challenging, due to its extreme instability under ambient conditions. Here we present Raman characterization of CrI3, and demonstrate that the main degradation pathway of CrI3 is the photocatalytic substitution of iodine by water. While simple encapsulation by Al2O3, PMMA and hexagonal BN (hBN) only leads to modest reduction in degradation rate, minimizing exposure of light markedly improves stability, and CrI3 sheets sandwiched between hBN layers are air-stable for >10 days. By monitoring the transfer characteristics of CrI3/graphene heterostructure over the course of degradation, we show that the aquachromium solution hole-dopes graphene.
Comment: 4 figures