학술논문

MUSE view of PDS 456: kpc-scale wind, extended ionized gas and close environment
Document Type
Working Paper
Source
A&A 686, A250 (2024)
Subject
Astrophysics - Astrophysics of Galaxies
Language
Abstract
PDS 456 is the most luminous RQQ at z<0.3 and can be regarded as a local counterpart of the powerful QSOs shining at Cosmic Noon. It hosts a strong nuclear X-ray ultra-fast outflow, and a massive and clumpy CO(3-2) molecular outflow extending up to 5 kpc from the nucleus. We analyzed the first MUSE WFM and AO-NFM optical integral field spectroscopic observations of PDS456. The AO-NFM observations provide an unprecedented spatial resolution, reaching up to 280 pc. Our findings reveal a complex circumgalactic medium around PDS 456, extending up to a maximum projected size of ~46 kpc. This includes a reservoir of gas with a mass of ~1e7-1e8 Modot, along with eight companion galaxies, and a multi-phase outflow. WFM and NFM MUSE data reveal an outflow on a large scale (~12 kpc from the quasar) in [OIII], and on smaller scales (within 3 kpc) with higher resolution (about 280 pc) in Halpha, respectively. The [OIII] outflow mass rate is 2.3 +/- 0.2 Modot/yr which is significantly lower than those typically found in other luminous quasars. Remarkably, the Ha outflow shows a similar scale, morphology, and kinematics to the CO(3-2) molecular outflow, with the latter dominating in terms of kinetic energy and mass outflow rate by two and one orders of magnitude, respectively. Our results therefore indicate that mergers, powerful AGN activity, and feedback through AGN-driven winds will collectively contribute to shaping the host galaxy evolution of PDS 456, and likely, that of similar objects at the brightest end of the AGN luminosity function across all redshifts. Moreover, the finding that the momentum boost of the total outflow deviates from the expected energy-conserving expansion for large-scale outflows highlights the need of novel AGN-driven outflow models to comprehensively interpret these phenomena.
Comment: 15 pages, 13 figures accepted for publication in Astronomy & Astrophysics