학술논문

How robust are the parameter constraints extending the $\Lambda$CDM model?
Document Type
Working Paper
Source
PRD 111 (2025) 023540
Subject
Astrophysics - Cosmology and Nongalactic Astrophysics
Language
Abstract
We present model-marginalized limits on the six standard $\Lambda$CDM cosmological parameters ($\Omega_{\rm c} h^2$, $\Omega_{\rm b} h^2$, $\theta_{\rm MC}$, $\tau_{\rm reio}$, $n_s$ and $A_s$), as well as on selected derived quantities ($H_0$, $\Omega_{\rm m}$, $\sigma_8$, $S_8$ and $r_{\rm drag}$), obtained by considering several extensions of the $\Lambda$CDM model and three independent Cosmic Microwave Background (CMB) experiments: the Planck satellite, the Atacama Cosmology Telescope, and South Pole Telescope. We also consider low redshift observations in the form of Baryon Acoustic Oscillation (BAO) data from the SDSS-IV eBOSS survey and Supernovae (SN) distance moduli measurements from the \textit{Pantheon-Plus} catalog. The marginalized errors are stable against the different minimal extensions of the $\Lambda$CDM model explored in this study. The largest impact on the parameter accuracy is produced by varying the effective number of relativistic degrees of freedom ($N_{\rm eff}$) or the lensing amplitude ($A_{\rm lens}$). Nevertheless, the marginalized errors on some \textit{derived} parameters such as $H_0$ or $\Omega_{\rm m}$ can be up to two orders of magnitude larger than in the canonical $\Lambda$CDM scenario when considering only CMB data. In these cases, low redshift measurements are crucial for restoring the stability of the marginalized cosmological errors computed here. Overall, our results underscore remarkable stability in the mean values and precision of the main cosmological parameters once both high and low redshift probes are fully accounted for. The marginalized values can be used in numerical analyses due to their robustness and slightly larger errors, providing a more realistic and conservative approach.
Comment: 24 pages, 11 figures, 11 tables. Version accepted for publication in PRD