학술논문

Holographic thermal entropy from geodesic bit threads
Document Type
Working Paper
Source
JHEP 07 (2024) 088
Subject
High Energy Physics - Theory
Condensed Matter - Statistical Mechanics
Language
Abstract
The holographic bit threads are an insightful tool to investigate the holographic entanglement entropy and other quantities related to the bipartite entanglement in AdS/CFT. We mainly explore the geodesic bit threads in various static backgrounds, for the bipartitions characterized by either a sphere or an infinite strip. In pure AdS and for the sphere, the geodesic bit threads provide a gravitational dual of the map implementing the geometric action of the modular conjugation in the dual CFT. In Schwarzschild AdS black brane and for the sphere, our numerical analysis shows that the flux of the geodesic bit threads through the horizon gives the holographic thermal entropy of the sphere. This feature is not observed when the subsystem is an infinite strip, whenever we can construct the corresponding bit threads. The bit threads are also determined by the global structure of the gravitational background; indeed, for instance, we show that the geodesic bit threads of an arc in the BTZ black hole cannot be constructed.
Comment: 84 pages, 31 figures