학술논문

Attosecond-resolved photoionization of chiral molecules
Document Type
Working Paper
Source
Science 358, 1288-1294 (2017)
Subject
Physics - Chemical Physics
Physics - Atomic and Molecular Clusters
Physics - Atomic Physics
Language
Abstract
Chiral light-matter interactions have been investigated for two centuries, leading to the discovery of many chiroptical processes used for discrimination of enantiomers. Whereas most chiroptical effects result from a response of bound electrons, photoionization can produce much stronger chiral signals that manifest as asymmetries in the angular distribution of the photoelectrons along the light propagation axis. Here we implement a self-referenced attosecond photoelectron interferometry to measure the temporal profile of the forward and backward electron wavepackets emitted upon photoionization of camphor by circularly polarized laser pulses. We found a delay between electrons ejected forward and backward, which depends on the ejection angle and reaches 24 attoseconds. The asymmetric temporal shape of electron wavepackets emitted through an autoionizing state further reveals the chiral character of strongly-correlated electronic dynamics.