학술논문

The Optical Corrector for the Dark Energy Spectroscopic Instrument
Document Type
Working Paper
Source
Subject
Astrophysics - Instrumentation and Methods for Astrophysics
Astrophysics - Cosmology and Nongalactic Astrophysics
Language
Abstract
The Dark Energy Spectroscopic Instrument (DESI) is currently measuring the spectra of 40\,million galaxies and quasars, the largest such survey ever made to probe the nature of cosmological dark energy. The 4-meter Mayall telescope at Kitt Peak National Observatory has been adapted for DESI, including the construction of a 3.2-degree diameter prime focus corrector that focuses astronomical light onto a 0.8-meter diameter focal surface with excellent image quality over the DESI bandpass of 360-980nm. The wide-field corrector includes six lenses, as large as 1.1-meters in diameter and as heavy as 237\,kilograms, including two counter-rotating wedged lenses that correct for atmospheric dispersion over Zenith angles from 0 to 60 degrees. The lenses, cells, and barrel assembly all meet precise alignment tolerances on the order of tens of microns. The barrel alignment is maintained throughout a range of observing angles and temperature excursions in the Mayall dome by use of a hexapod, which is itself supported by a new cage, ring, and truss structure. In this paper we describe the design, fabrication, and performance of the new corrector and associated structure, focusing on how they meet DESI requirements. In particular we describe the prescription and specifications of the lenses, design choices and error budgeting of the barrel assembly, stray light mitigations, and integration and test at the Mayall telescope. We conclude with some validation highlights that demonstrate the successful corrector on-sky performance, and list some lessons learned during the multi-year fabrication phase.
Comment: 68 pages, 56 figures, 22 tables. Submitted to the Astronomical Journal