학술논문

Characterization of a Transmon Qubit in a 3D Cavity for Quantum Machine Learning and Photon Counting
Document Type
Working Paper
Source
Subject
Quantum Physics
High Energy Physics - Phenomenology
Language
Abstract
In this paper we report the use of superconducting transmon qubit in a 3D cavity for quantum machine learning and photon counting applications. We first describe the realization and characterization of a transmon qubit coupled to a 3D resonator, providing a detailed description of the simulation framework and of the experimental measurement of important parameters, like the dispersive shift and the qubit anharmonicity. We then report on a Quantum Machine Learning application implemented on the single-qubit device to fit the u-quark parton distribution function of the proton. In the final section of the manuscript we present a new microwave photon detection scheme based on two qubits coupled to the same 3D resonator. This could in principle decrease the dark count rate, favouring applications like axion dark matter searches.
Comment: 22 pages, 10 figures, accepted in Applied Sciences, code available at https://qibo.science