학술논문

A nebular origin for the persistent radio emission of fast radio bursts
Document Type
Working Paper
Source
Subject
Astrophysics - High Energy Astrophysical Phenomena
Language
Abstract
Fast radio bursts (FRBs) are millisecond-duration, bright ($\sim$Jy) extragalactic bursts, whose production mechanism is still unclear. Recently, two repeating FRBs were found to have a physically associated persistent radio source of non-thermal origin. These two FRBs have unusually large Faraday rotation measure values likely tracing a dense magneto-ionic medium, consistent with synchrotron radiation originating from a nebula surrounding the FRB source. Recent theoretical arguments predict that, if the observed Faraday rotation measure mostly arises from the persistent radio source region, there should be a simple relation between the luminosity of the latter and the first. We report here the detection of a third, less luminous persistent radio source associated with the repeating FRB source FRB20201124A at a distance of 413 Mpc, significantly expanding the predicted relation into the low luminosity - low Faraday rotation measure regime ($<$1000 rad m-2). At lower values of the Faraday rotation measure, the expected radio luminosity falls below the limit of detection threshold for present-day radio telescopes. These findings support the idea that the persistent radio sources observed so far are generated by a nebula in the FRB environment, and that FRBs with low Faraday rotation measure may not show a persistent radio source because of a weaker magneto-ionic medium. This is generally consistent with models invoking a young magnetar as the central engine of the FRB, where the surrounding ionized nebula - or the interacting shock in a binary system - powers the persistent radio source.
Comment: Accepted for publication on Nature