학술논문

The Progenitor Star of SN 2023ixf: A Massive Red Supergiant with Enhanced, Episodic Pre-Supernova Mass Loss
Document Type
Working Paper
Source
Subject
Astrophysics - Solar and Stellar Astrophysics
Astrophysics - Astrophysics of Galaxies
Language
Abstract
We identify the progenitor star of SN 2023ixf in the nearby galaxy Messier 101 using Keck/NIRC2 adaptive optics imaging and pre-explosion HST/ACS images. The supernova position, localized with diffraction-spike pattern and high precision relative astrometry, unambiguously coincides with a single progenitor candidate of m_F814W=24.96(-0.04)(+0.05). Forced photometry further recovers 2-sigma detections in the F673N and F675W bands and imposes robust flux limits on the bluer bands. Given the reported infrared excess and semi-regular variability of the progenitor, we fit a time-dependent spectral energy distribution (SED) model of a dusty red supergiant (RSG) to a combined dataset of HST photometry, as well as ground-based near-infrared and Spitzer/IRAC [3.6], [4.5] photometry from the literature. The progenitor closely resembles a RSG of T_eff=3343+/-27 K and logL=5.10+/-0.02, with a 0.11+/-0.01 dex (25.2+/-1.7 per cent) variation over the mean luminosity at a period of P=1128.3+/-6.5 days, heavily obscured by a dust envelope with an optical depth of tau=2.83+/-0.03 at 1 micron (or A_V=10.28+/-0.11 mag). Such observed signatures match a post-main sequence star of 18.1(-1.2)(+0.7) Msun, close to the most massive SN II progenitor, with a pulsation-enhanced mass-loss rate of M_dot=(3.58+/-0.15) x 10^(-4) Msun/yr. The dense and confined circumstellar material is likely ejected during the last episode of radial pulsation before the explosion. Notably, we find strong evidence for periodic variation of tau (or both T_eff and tau) along with luminosity, a necessary assumption to reproduce the wavelength dependence of the variability, which implies dust sublimation and condensation during radial pulsations. Given the observed SED, partial dust obscuration remains a possible scenario, but any unobstructed binary companion over 7.1 Msun can be ruled out.
Comment: submitted