학술논문

Efficient near-infrared organic light-emitting diodes with emission from spin doublet excitons
Document Type
Working Paper
Source
Subject
Physics - Applied Physics
Condensed Matter - Materials Science
Physics - Chemical Physics
Language
Abstract
The development of luminescent organic radicals has resulted in materials with excellent optical properties for near-infrared (NIR) emission. Applications of light generation in this range span from bioimaging to surveillance. Whilst the unpaired electron arrangements of radicals enable efficient radiative transitions within the doublet-spin manifold in organic light-emitting diodes (OLEDs), their performance is limited by non-radiative pathways introduced in electroluminescence. Here, we present a host:guest design for OLEDs that exploits energy transfer with demonstration of up to 9.6% external quantum efficiency (EQE) for 800 nm emission. The tris(2,4,6-trichlorophenyl)methyl-triphenylamine (TTM-TPA) radical guest is energy-matched to the triplet state in a charge-transporting anthracene-derivative host. We show from optical spectroscopy and quantum-chemical modelling that reversible host-guest triplet-doublet energy transfer allows efficient harvesting of host triplet excitons.