학술논문

Broken-symmetry magnetic phases in two-dimensional triangulene crystals
Document Type
Working Paper
Source
Subject
Condensed Matter - Mesoscale and Nanoscale Physics
Language
Abstract
We provide a comprehensive theory of magnetic phases in two-dimensional triangulene crystals, using both Hubbard model and density functional theory (DFT) calculations. We consider centrosymmetric and non-centrosymmetric triangulene crystals. In all cases, DFT and mean-field Hubbard model predict the emergence of broken-symmetry antiferromagnetic (ferrimagnetic) phases for the centrosymmetric (non-centrosymmetric) crystals. This includes the special case of the [4,4]triangulene crystal, whose non-interacting energy bands feature a gap with flat valence and conduction bands. We show how the lack of contrast between the local density of states of these bands, recently measured via scanning tunneling spectroscopy, is a natural consequence of a broken-symmetry N\'eel state that blocks intermolecular hybridization. Using random phase approximation, we also compute the spin wave spectrum of these crystals, including the recently synthesized [4,4]triangulene crystal. The results are in excellent agreement with the predictions of a Heisenberg spin model derived from multi-configuration calculations for the unit cell. We conclude that experimental results are compatible with an antiferromagnetically ordered phase where each triangulene retains the spin predicted for the isolated species.