학술논문

Can we constrain warm dark matter masses with individual galaxies?
Document Type
Working Paper
Source
Subject
Astrophysics - Cosmology and Nongalactic Astrophysics
Astrophysics - Astrophysics of Galaxies
Astrophysics - Instrumentation and Methods for Astrophysics
Language
Abstract
We study the impact of warm dark matter mass on the internal properties of individual galaxies using a large suite of 1,024 state-of-the-art cosmological hydrodynamic simulations from the DREAMS project. We take individual galaxies' properties from the simulations, which have different cosmologies, astrophysics, and warm dark matter masses, and train normalizing flows to learn the posterior of the parameters. We find that our models cannot infer the value of the warm dark matter mass, even when the values of the cosmological and astrophysical parameters are given explicitly. This result holds for galaxies with stellar mass larger than $2\times10^8 M_\odot/h$ at both low and high redshifts. We calculate the mutual information and find no significant dependence between the WDM mass and galaxy properties. On the other hand, our models can infer the value of $\Omega_{\rm m}$ with a $\sim10\%$ accuracy from the properties of individual galaxies while marginalizing astrophysics and warm dark matter masses.
Comment: 13 pages, 8 figures