학술논문

Data-driven Semi-supervised Machine Learning with Surrogate Measures of Safety for Abnormal Driving Behavior Detection
Document Type
Working Paper
Source
Subject
Computer Science - Machine Learning
Computer Science - Artificial Intelligence
Electrical Engineering and Systems Science - Signal Processing
Statistics - Other Statistics
Language
Abstract
Detecting abnormal driving behavior is critical for road traffic safety and the evaluation of drivers' behavior. With the advancement of machine learning (ML) algorithms and the accumulation of naturalistic driving data, many ML models have been adopted for abnormal driving behavior detection (also referred to in this paper as anomalies). Most existing ML-based detectors rely on (fully) supervised ML methods, which require substantial labeled data. However, ground truth labels are not always available in the real world, and labeling large amounts of data is tedious. Thus, there is a need to explore unsupervised or semi-supervised methods to make the anomaly detection process more feasible and efficient. To fill this research gap, this study analyzes large-scale real-world data revealing several abnormal driving behaviors (e.g., sudden acceleration, rapid lane-changing) and develops a Hierarchical Extreme Learning Machines (HELM) based semi-supervised ML method using partly labeled data to accurately detect the identified abnormal driving behaviors. Moreover, previous ML-based approaches predominantly utilized basic vehicle motion features (such as velocity and acceleration) to label and detect abnormal driving behaviors, while this study seeks to introduce Surrogate Measures of Safety (SMoS) as input features for ML models to improve the detection performance. Results from extensive experiments demonstrate the effectiveness of the proposed semi-supervised ML model with the introduced SMoS serving as important features. The proposed semi-supervised ML method outperforms other baseline semi-supervised or unsupervised methods regarding various metrics, e.g., delivering the best accuracy at 99.58% and the best F-1 measure at 0.9913. The ablation study further highlights the significance of SMoS for advancing the detection performance of abnormal driving behaviors.
Comment: 24 pages, 10 figures, accepted by the 103rd Transportation Research Board (TRB) Annual Meeting, under third round review by Transportation Research Record: Journal of the Transportation Research Board