학술논문

Cytoplasmic nanojunctions between lysosomes and sarcoplasmic reticulum are required for specific calcium signaling
Document Type
Working Paper
Source
Subject
Quantitative Biology - Subcellular Processes
Language
Abstract
We demonstrate how nanojunctions between lysosomes and sarcoplasmic reticulum (L-SR junctions) serve to couple lysosomal activation to regenerative, ryanodine receptor-mediated cellular calcium (Ca2+) waves. In pulmonary artery smooth muscle cells (PASMCs) nicotinic acid adenine dinucleotide phosphate (NAADP) may trigger increases in cytoplasmic Ca2+ via L-SR junctions, in a manner that requires initial Ca2+ release from lysosomes and subsequent Ca2+-induced Ca2+ release (CICR) via ryanodine receptor (RyR) subtype 3 on the SR membrane proximal to lysosomes. L-SR junction membrane separation has been estimated to be <400 nm and thus beyond the resolution of light microscopy. This study utilizes transmission electron microscopy to provide a thorough ultrastructural characterization of the L-SR junctions in PASMCs. These junctions are prominent features in these cells and we estimate that the membrane separation and extension are about 15 nm and 300 nm, respectively. We also develop a quantitative model of the L-SR junction using these measurements, prior kinetic and specific Ca2+ signal information as input data. Simulations of NAADP-dependent junctional Ca2+ transients show that the magnitude of these signals can breach the threshold for CICR via RyR3. By correlation analysis of live cell Ca2+ signals and simulated L-SR junctional Ca2+ transients, we estimate that "trigger zones" with a 60-100 junctions are required to confer a signal of similar magnitude. This is compatible with the 130 lysosomes/cell estimated from our ultrastructural observations. Most importantly, our model shows that increasing the L-SR junctional width above 50 nm lowers the magnitude of junctional [Ca2+] such that there is a failure to breach the threshold for CICR via RyR3. L-SR junctions are therefore a pre-requisite for efficient Ca2+ signal coupling and may contribute to cellular function in health and disease.
Comment: 25 pages, 7 figures, 2 tables; a slightly expanded version of this manuscript was submitted for publication in PLoS One