학술논문

Observation of Chiral Surface State in Superconducting NbGe$_2$
Document Type
Working Paper
Source
Subject
Condensed Matter - Mesoscale and Nanoscale Physics
Condensed Matter - Superconductivity
Language
Abstract
The interplay between topology and superconductivity in quantum materials harbors rich physics ripe for discovery. In this study, we investigate the topological properties and superconductivity of the nonsymmorphic chiral superconductor NbGe$_2$ using high-resolution angle-resolved pho-toemission spectroscopy (ARPES), transport measurements, and ab initio calculations. The ARPES data revealed exotic chiral surface states on the (100) surface originating from the inherent chiral crystal structure. Supporting calculations indicate that NbGe$_2$ likely hosts elusive Weyl fermions in its bulk electronic structure. Furthermore, we uncovered the signatures of van Hove singularities that can enhance many-body interactions. Additionally, transport measurements demonstrated that NbGe$_2$ exhibits superconductivity below 2K. Overall, our comprehensive results provide the first concrete evidence that NbGe$_2$ is a promising platform for investigating the interplay between non-trivial band topology, possible Weyl fermions, van Hove singularities, and superconductivity in chiral quantum materials.