학술논문

Filamentary structures of ionized gas in Cygnus X
Document Type
Working Paper
Source
A&A 664, A88 (2022)
Subject
Astrophysics - Astrophysics of Galaxies
Language
Abstract
Ionized gas probes the influence of massive stars on their environment. The Cygnus X region (d~1.5 kpc) is one of the most massive star forming complexes in our Galaxy, in which the Cyg OB2 association (age of 3-5 Myr and stellar mass $2 \times 10^{4}$ M$_{\odot}$) has a dominant influence. We observe the Cygnus X region at 148 MHz using the Low Frequency Array (LOFAR) and take into account short-spacing information during image deconvolution. Together with data from the Canadian Galactic Plane Survey, we investigate the morphology, distribution, and physical conditions of low-density ionized gas in a $4^{\circ} \times 4^{\circ}$ (100 pc $\times$ 100 pc) region at a resolution of 2' (0.9 pc). The Galactic radio emission in the region analyzed is almost entirely thermal (free-free) at 148 MHz, with emission measures of $10^3 < EM~{\rm[pc~cm^{-6}]} < 10^6$. As filamentary structure is a prominent feature of the emission, we use DisPerSE and FilChap to identify filamentary ridges and characterize their radial ($EM$) profiles. The distribution of radial profiles has a characteristic width of 4.3 pc and a power-law distribution ($\beta = -1.8 \pm 0.1$) in peak $EM$ down to our completeness limit of 4200 pc cm$^{-6}$. The electron densities of the filamentary structure range from $10 < n_e~{\rm[cm^{-3}]} < 400$ with a median value of 35 cm$^{-3}$, remarkably similar to [N II] surveys of ionized gas. Cyg OB2 may ionize at most two-thirds of the total ionized gas and the ionized gas in filaments. More than half of the filamentary structures are likely photoevaporating surfaces flowing into a surrounding diffuse (~5 cm$^{-3}$) medium. However, this is likely not the case for all ionized gas ridges. A characteristic width in the distribution of ionized gas points to the stellar winds of Cyg OB2 creating a fraction of the ionized filaments through swept-up ionized gas or dissipated turbulence.
Comment: 19 pages, 14 figures, 1 table; accepted for publication in A&A