학술논문

Hyperons in thermal QCD: A lattice view
Document Type
Working Paper
Source
Phys. Rev. D 99, 074503 (2019)
Subject
High Energy Physics - Lattice
High Energy Physics - Phenomenology
Nuclear Theory
Language
Abstract
The hadron resonance gas (HRG) is a widely used description of matter under extreme conditions, e.g. in the context of heavy-ion phenomenology. Commonly used implementations of the HRG employ vacuum hadron masses throughout the hadronic phase and hence do not include possible in-medium effects. Here we investigate this issue, using nonperturbative lattice simulations employing the FASTSUM anisotropic Nf=2+1 ensembles. We study the fate of octet and decuplet baryons as the temperature increases, focussing in particular on the positive- and negative-parity groundstates. While the positive-parity groundstate masses are indeed seen to be temperature independent, within the error, a strong temperature dependence is observed in the negative-parity channels. We give a simple parametrisation of this and formulate an in-medium HRG, which is particularly effective for hyperons. Parity doubling is seen to emerge in the deconfined phase at the level of correlators, with a noticeable effect of the heavier s quark. Channel dependence of this transition is analysed.
Comment: 9 pages, 6 eps figures, minor changes, to appear in PRD